88 research outputs found

    The Moss Macromitrium Richardii (Orthotrichaceae) with Sporophyte and Calyptra Enclosed in Hymenaea Resin from the Dominican Republic

    Get PDF
    Abstract Dominican amber is an important source for Early Miocene bryophytes. We report the moss Macromitrium richardii SchwÀgr., an extant representative of the Orthotrichaceae, from the Dominican amber collection of the American Museum of Natural History. This species is currently a widespread Neotropical epiphyte. The specimen includes several gametophytes and sporophytes, and represents the first fossil record of Orthotrichaceae. Alongside the Macromitrium shoots we observed several fragments of the liverworts Cheilolejeunea antiqua and Frullania sp. The unusual thermal behavior of the resin sample initially led to doubts about the Miocene age of the specimen, but chemical analyses of the Hymenaea resin provides evidence that the specimen represents a highly oxidized sample of Miocene Dominican amber rather than an artificially thermally-treated subfossil resin (copal). Our inclusion demonstrates the exceptional preservation potential of tree resin, but our observations also suggest that provenance (including any possibility that a modern resin has been thermally treated to make it appear older) should be scrutinized when single pieces with atypical thermal behavior and exceptionally well-preserved extant morphotypes come to light

    A Burmese amber fossil of Radula (Porellales, Jungermanniopsida) provides insights into the Cretaceous evolution of epiphytic lineages of leafy liverworts

    Get PDF
    DNA-based divergence time estimates suggested major changes in the composition of epiphyte lineages of liverworts during the Cretaceous;however, evidence from the fossil record is scarce. We present the first Cretaceous fossil of the predominantly epiphytic leafy liverwort genus Radula in ca. 100 Myr old Burmese amber. The fossil's exquisite preservation allows first insights into the morphology of early crown group representatives of Radula occurring in gymnosperm-dominated forests. Ancestral character state reconstruction aligns the fossil with the crown group of Radula subg. Odontoradula;however, corresponding divergence time estimates using the software BEAST lead to unrealistically old age estimates. Alternatively, assignment of the fossil to the stem of subg. Odontoradula results in a stem age estimate of Radula of 227.8Ma (95% highest posterior density (HPD): 165.7-306.7) and a crown group estimate of 176.3Ma (135.1-227.4), in agreement with analyses employing standard substitution rates (stem age 235.6 Ma (142.9-368.5), crown group age 183.8 Ma (109.9-289.1)). The fossil likely belongs to the stem lineage of Radula subg. Odontoradula. The fossil's modern morphology suggests that switches from gymnosperm to angiosperm phorophytes occurred without changes in plant body plans in epiphytic liverworts. The fossil provides evidence for striking morphological homoplasy in time. Even conservative node assignments of the fossil support older rather than younger age estimates of the Radula crown group, involving origins for most extant subgenera by the end of the Cretaceous and diversification of their crown groups in the Cenozoic

    World checklist of hornworts and liverworts

    Get PDF
    A working checklist of accepted taxa worldwide is vital in achieving the goal of developing an online flora of all known plants by 2020 as part of the Global Strategy for Plant Conservation. We here present the first-ever worldwide checklist for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) that includes 7486 species in 398 genera representing 92 families from the two phyla. The checklist has far reaching implications and applications, including providing a valuable tool for taxonomists and systematists, analyzing phytogeographic and diversity patterns, aiding in the assessment of floristic and taxonomic knowledge, and identifying geographical gaps in our understanding of the global liverwort and hornwort flora. The checklist is derived from a working data set centralizing nomenclature, taxonomy and geography on a global scale. Prior to this effort a lack of centralization has been a major impediment for the study and analysis of species richness, conservation and systematic research at both regional and global scales. The success of this checklist, initiated in 2008, has been underpinned by its community approach involving taxonomic specialists working towards a consensus on taxonomy, nomenclature and distribution

    New national and regional bryophyte records, 45

    Full text link
    • 

    corecore